Interpreting Hundness with X-ray spectroscopy: a missing piece of the many-body picture

<u>L. Andrew Wray</u>¹, Lin Miao^{1,2}, Haowei He¹, Jonathan Denlinger², Yi-De Chuang², Chang-Jong Kang³, Yilin Wang⁴, Gabriel Kotliar³, Ioannis Giannakis⁵, Pegor Aynajian⁵, Sheng Ran⁶, and Nicholas P. Butch^{6,7}

The Hund's rules are central to our understanding of how electrons interact to align angular momentum on the same atom. However, their role in many-body systems (sometimes called "Hundness") can be phenomenally difficult to evaluate. I will talk about our recent investigation of several materials poised at the crossover between electronic localization and itinerancy, and show that Hundness can be a key factor for establishing interesting low-temperature phases in such an environment. The talk will focus in particular on our studies of the 'hidden order' state of URu_2Si_2 [1], the metal-insulator transition of VO_2 [2], and a 'singlet-based' magnetic phase we have recently discovered in USb_2 [3]. Our experimental characterization of Hundness involves resolving and manipulating electronic symmetries on the atomic scale, and is greatly facilitated by ongoing advances in X-ray spectroscopies such as resonant inelastic X-ray scattering (RIXS).

References

- [1] L. Andrew Wray et al., Phys. Rev. Lett. 114, 236401 (2015).
- [2] Haowei He et al., Phys. Rev. B **94**, 161119(R) (2016).
- [3] Lin Miao et al., Nat. Commun. 10, 644 (2019).

¹Department of Physics, New York University, USA; lawray@nyu.edu

²Advanced Light Source, Lawrence Berkeley National Laboratory, USA

³Department of Physics and Astronomy, Rutgers University, USA

⁴Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, USA

⁵Department of Physics, Applied Physics and Astronomy, Binghamton University, USA

⁶NIST Center for Neutron Research, National Institute of Standards and Technology, USA

⁷Department of Physics, University of Maryland, USA